DISPLAY Elektronik GmbH

DATA SHEET

LCD MODULE

DEM 128064A2 FGH-PW

Product Specification

Version: 3

GENERAL SPECIFICATION

MODULE NO.:

DEM 128064A2 FGH-PW

CUSTOMER P/N

VERSION NO.	CHANGE DESCRIPTION	DATE
0	ORIGINAL VERSION	22.08.2025
1	Updated the module drawing on page4 Add the life time of the BL on page 6	27.08.2025
2	Updated the life time of the BL on page 6	11.09.2025
3	Updated the PCB drawing on page 5	21.11.2025

PREPARED BY: CC DATE: 21.11.2025

APPROVED BY: WH DATE: 21.11.2025

CONTENTS

1. FUNCTIONS & FEATURES	2
2. MECHANICAL SPECIFICATIONS	2
3. BLOCK DIAGRAM	3
4. EXTERNAL DIMENSIONS	4
5. PIN ASSIGNMENT	5
6. PCB DRAWING AND DESCRIPTION	
7. BACKLIGHT ELECTRICAL/OPTICAL SPECIFICATION	6
8. APPLICATION CIRCUIT	7
9. MAXIMUM ABSOLUTE POWER RATINGS (TA=25°C)	7
10. ELECTRICAL CHARACTERISTICS	8
11. DISPLAY CONTROL INSTRUCTION	9
12. MODULE ACCEPT QUALITY LEVEL (AQL)	12
13. RELIABILITY TEST	12
14. LCD MODULES HANDLING PRECAUTIONS	13

1. FUNCTIONS & FEATURES

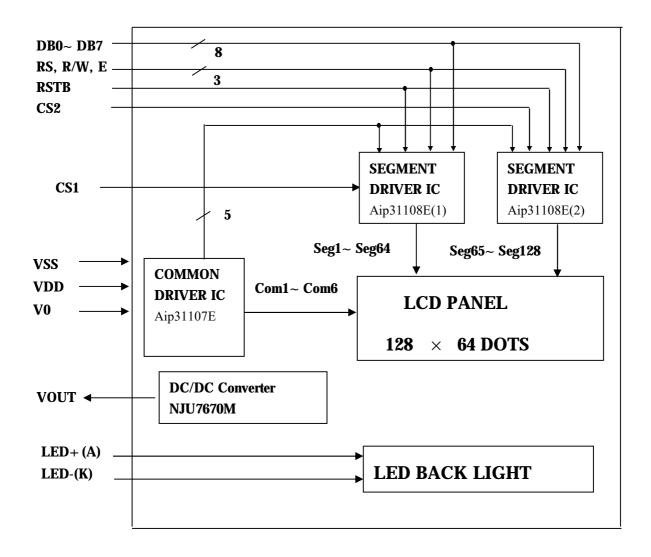
MODULE NAME	LCD TYPE	Backlight Color	Remarks
DEM 128064A2 FGH-PW	FSTN Transflective Positive Mode	White	-

I Viewing Direction : 6 O'clock

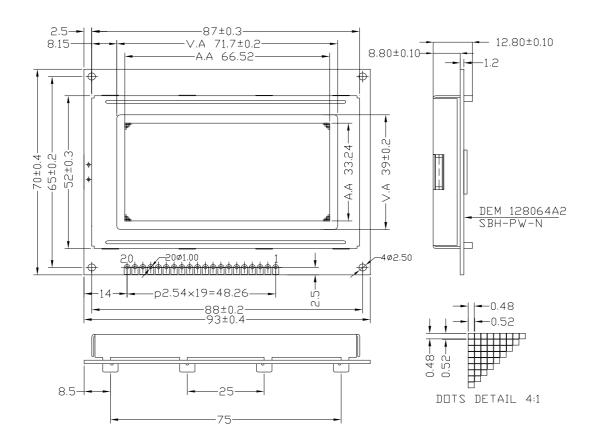
I Driving Scheme : 1/64 Duty Cycle, 1/9 Bias

 $\begin{array}{ll} \textbf{I} & \text{Power Supply Voltage} & : 5.0 \text{ Volt (typ.)} \\ \textbf{I} & \text{V}_{\text{LCD}} \text{ Adjustable For Best Contrast} & : 12.9 \text{ Volt (typ.)} \\ \textbf{I} & \text{Display Contents} & : 128 \text{ x 64 Dots} \\ \end{array}$

I Internal Memory : 512 bytes (4096 bits)


I Interface : Easy Interface with a 4-Bit or 8-Bit MPU

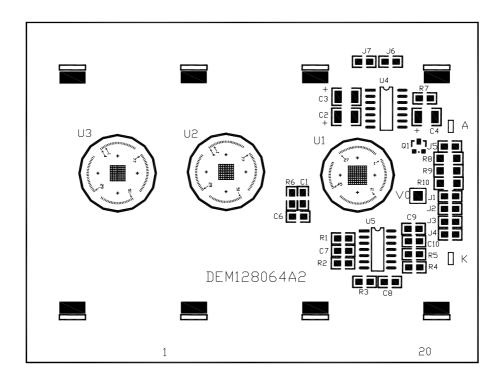
2. MECHANICAL SPECIFICATIONS


I Module Size : 93.00 x 70.00 x 12.80 mm

I Dot Size : 0.48 x 0.48 mm
I Dot Pitch : 0.52 x 0.52 mm

3. BLOCK DIAGRAM

4. EXTERNAL DIMENSIONS


REMARKS: 1,UNMARKED TOLERANCE IS ±0.3, 2,ALL METERIALS COMPLY WITH ROHS..

5. PIN ASSIGNMENT

Pin No.	Symbol	Function					
1	VSS	Ground					
2	VDD	Power supply voltage for logic,+ 5.0V.					
3	V0	Input voltage for LCD					
		Data or Instruction.					
4	RS	RS=H→DB<0:7>: Display RAM Data					
		RS=L→DB<0:7>: Instruction Data					
5	R/W	Read or Write.					
3	IV/ W	R/W=H→Data appears at DB<0:7> and can be read.					
6	Е	Chip enable signal					
7	DB0						
8	DB1						
9	DB2						
10	DB3	Data bus. There state I/O common terminal.					
11	DB4	Data bus. There state I/O common terminal.					
12	DB5						
13	DB6						
14	DB7						
15	CS1	Chip select signal for Aip31108E(1)					
16	CS2	Chip select signal for Aip31108E(2)					
17	RSTB	Reset signal					
18	VOUT	Output voltage for LCD,-5.0V					
19	LED + (A)	Please also refer to 6.2 Description					
20	LED – (K)	Please also refer to 6.2 Description					

6. PCB DRAWING AND DESCRIPTION

6-1 PCB DRAWING.

6-2 DESCRIPTION:

6-2-1. The polarity of the pin 19 and the pin 20:

	J2,J4	J1,J3	19 Pin	20 Pin
Option 1	Open	Close	Anode	Cathode
Option 2	Close	Open	Cathode	Anode

Note: In application module, J2=J4=open, J1=J3=closed

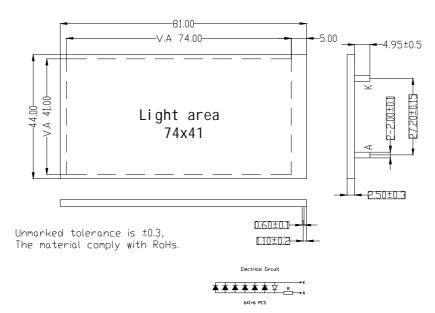
6-2-2. The LED resistor can be bridged when the J5 is closed

Note: In application module, J5=open

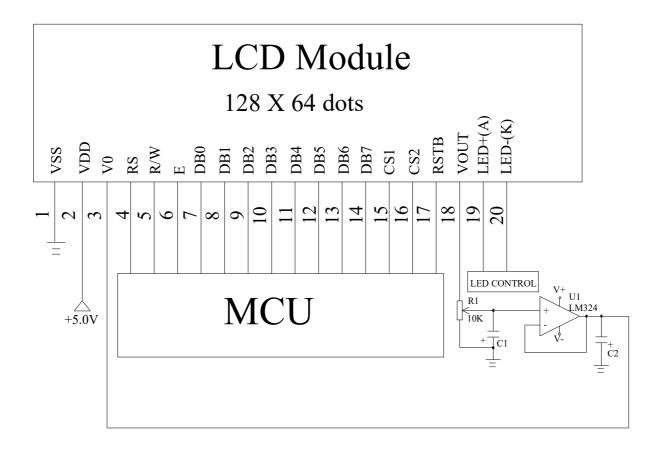
6-2-3. The R8, R9 and R10 are the LED resistor.

Note: In application module, R8=R9=33 Ω , R10=open

6-2-4. The metal-bezel is set on ground when the J6 is closed.


Note: In application module, J6=closed.

7. BACKLIGHT ELECTRICAL/OPTICAL SPECIFICATION


7-1 BACKLIGHT ELECTRICAL/OPTICAL DESCRIPTION.

Item	Symbol	MIN.	TYP.	MAX.	Unit	Conditions			
Forward Voltage	Vf	-	4.0	-	V	-			
Forward Current	If	-	90	120	mA	Vf = 4.0V			
Power Dissipation	Pd	-	0.36	-	W	Vf = 4.0V			
Reverse Voltage	VR	-	1	5.0	V				
Reverse Current	IR	-	-	0.4	mA	-			
Luminous Intensity	Lv	130	-	-	cd/m ²	Vf = 4.0V			
Luminous Uniformity	ΔLv	70	1	-	%	Vf = 4.0V			
Emission Wavelength	X	0.27	ı	0.32		If=10mA, Ta=25°C each chip			
Emission wavelength	у	0.27	ı	0.32		II-10mA, 1a-23 C each chip			
Backlight Color				White					
Lifetime	50.000 Hours								

7-2. BACKLIGHT DRAWING

8. APPLICATION CIRCUIT

NOTE: 1. R1 is the contrast resistor.

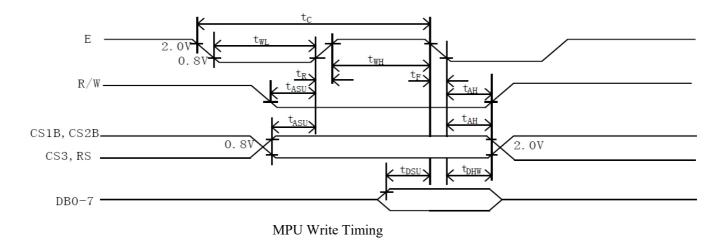
2. VOUT=-9.5V

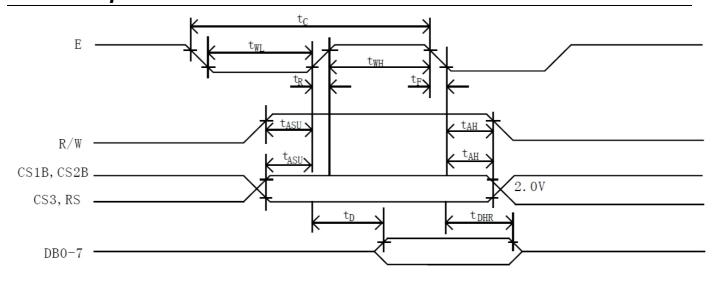
3. Adjust R1, it will be best contrast when V0 is -7.9V.

9. MAXIMUM ABSOLUTE POWER RATINGS (Ta=25°C)

Item	Symbol	Value	Unit
Operating Voltage	V_{DD}	-0.3~+7.0	V
Supply Voltage	$ m V_{EE}$	VDD-19~VDD+0.3	V
Dairron Crongler Volta an	VB	-0.3~VDD+0.3	V
Driver Supply Voltage	VLCD	VEE-0.3 ~ VDD+0.3	V
Operating Temperature	Topr	-20~+70	$^{\circ}\mathbb{C}$
Storage Temperature	Tstg	-25~+75	°C

10. ELECTRICAL CHARACTERISTICS


10-1 DC Characteristics (VDD=+ $5 \pm 10\%$ V_{ss}=0V,Ta=- $20\sim+70$ °C)


Itom	Crosshol	Standard Value			Test	Unit	
Item	Symbol	MIN	TYP	MAX	Condition	Unit	
Supply Current for Logic	V_{DD}	4.5	5.0	5.5		V	
Supply Current for Logic	I_{DD}		2.62	4		mA	
		13.4	14.1	14.8	-20°C		
Operating Voltage for LCD	V_{DD} - V_0	12.2	12.9	13.6	+25°C	V	
		11.0	11.7	12.4	+70°C		
Input Voltage "H" Level	VIH	$0.7V_{DD}$		V_{DD}		V	
Input Voltage "L" Level	VIL	0		$0.3V_{DD}$		V	

10-2 MPU Interface

MPU Interface

Characteristic	Symbol	Min.	Typ.	Max.	Unit
E Cycle	tc	1000	·	-	ns
E High Level Width	t _{WH}	450	3 	_	ns
E Low Level Width	t _{WL}	450	·	-	ns
E Rise Time	t _R	1	-	25	ns
E Fall Time	t _F	-	_	25	ns
Address Set-Up Time	t _{ASU}	140	_	_	ns
Address Hold Time	t _{AH}	10	2	_	ns
Data Set-Up Time	t _{DSU}	200	3	_	ns
Data Delay Time	t _D	-	3	320	ns
Data Hold Time (Write)	t _{DHW}	10	-	-	ns
Data Hold Time (Read)	t _{DHR}	20	19—41	_	ns

MPU Read Timing

11. DISPLAY CONTROL INSTRUCTION

Instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Function
Display ON/OFF	L	L	L	L	Н	Н	Н	Н	Н	L/H	Controls the display on or off. Internal status and display RAM data is not affected. L:OFF H:ON
Set Address (Y address)	L	L	L	Н		7	Y addres	s (0~63)	•	•	Sets the Y address in the Y address counter.
Set Page (X address)	L	L	Н	L	Н	Н	Н	P	age (0-7)	Sets the X address at the X address register.
Display Start Line (Z address)	L	L	Н	Н		Displ	ay start l	line (0-6	53)		Indicates the display data RAM displayed at the top of the screen.
Status Read	L	н	BUSY	L	ON/ OFF	RESET	L	L	L	L	Read status. BUSY L: Ready H: In operation ON/OFF L: Display ON H: Display OFF RESET L: Normal H: Reset
Write Display Data	Н	L				Write I	Writes data (DB0:7) into display data RAM. After writing instruction, Y address is increased by 1 automatically.				
Read Display Data	Н	Н			Read Data						Reads data (DB0:7) from display data RAM to the data bus.

Display On/Off

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	1	1	1	1	1	D

The display data appears when D is 1 and disappears when D is 0.

Though the data is not on the screen with D=0, it remains in the display data RAM.

Therefore, you can make it appear by changing D=0 into D=1.

Set Address (Y Address)

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0

Y address (AC0 ~ AC5) of the display data RAM is set in the Y address counter.

An address is set by instruction and increased by 1 automatically by read or write operations of display data.

Set Page (X Address)

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	1	1	1	AC2	AC1	AC0

X address(AC0 ~ AC2) of the display data RAM is set in the X address register.

Writing or reading to or from MPU is executed in this specified page until the next page is set.

Display Start Line (Z Address)

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	1	AC5	AC4	AC3	AC2	AC1	AC0

Z address (AC0 \sim AC5) of the display data RAM is set in the display start line register and displayed at the top of the screen. When the display duty cycle is 1/64 or others($1/32 \sim 1/64$), the data of total line number of LCD screen, from the line specified by display start line instruction, is displayed.

Status Read

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	1	BUSY	0	ON/OFF	RESET	0	0	0	0

BUSY

When BUSY is 1, the Chip is executing internal operation and no instructions are accepted.

When BUSY is 0, the Chip is ready to accept any instructions.

ON/OFF

When ON/OFF is 1, the display is off.

When ON/OFF is 0, the display is on.

RESET

When RESET is 1, the system is being initialized. In this condition, no instructions except status read can be accepted.

When RESET is 0, initializing has finished and the system is in the usual operation condition.

Write Display Data

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	0	D7	D6	D5	D4	D3	D2	D1	D0

Writes data (D0 \sim D7) into the display data RAM. After writing instruction, Y address is increased by 1 automatically.

Read Display Data

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	1	D7	D6	D5	D4	D3	D2	D1	D0

Reads data (D0 ~ D7) from the display data RAM. After reading instruction, Y address is increased by 1 automatically.

12. MODULE ACCEPT QUALITY LEVEL (AQL)

12.1 AQL Standard Value: Fatal Defect =0.1, Major Defect=0.65; Minor Defect =2.5.

12.2 Curtailed Inspection Scheme

	Batch Qty	inspection	AQL value	pass	Reject
Type		Qty			
	350PCS<	125pcs	0.1	0	1
	1000PCS		0.65	2	3
			2.5	7	8
	200PCS<	80pcs	0.1	0	1
module	350PCS		0.65	1	2
product			2.5	5	6
	<200PCS	32pcs	0.1	0	1
			0.65	0	1
			2.5	4	5
Module	<200PCS	All	/	/	The sample will be reject when
sample		inspected			the fateful defect>2pcs or main
	>200PCS	125pcs			defect>5pcs.

Notes: 1). Batch QTY is the production amount that Production department ship to QA department.

- 2). All of product will be inspected if the batch QTY less than inspected QTY.
- 3). Each batch fixed to be 500pcs.

13. RELIABILITY TEST

Operating life time: Longer than 50000 hours (at room temperature without direct irradiation of sunlight) Reliability Characteristics shall meet following requirements.

TEMPERATURE TESTS	NORMAL GRADE					
High Temperature Storage	+75°C * 96hrs					
	(Without Polarizer)					
Low Temperature Storage	-25°C * 96hrs					
High Temperature Operation	+70°C * 96hrs					
Low Temperature Operation	-20°C * 96hrs					
High Temperature, High Humidity	+70°C * 95%RH * 96hrs					
	(Without Polarizer)					
Thermal Shock	-20°C * 30min. ◆ 10s ↓ 5Cycles +70°C * 30min.					
Vibration Test	Frequency * Swing * Time 40Hz * 4mm * 4hrs					
Drop Test	Drop Height * Times 1.0m * 6times					

14. LCD MODULES HANDLING PRECAUTIONS

- **n** Please remove the protection foil of polarizer before using.
- **n** The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.
- **n** If the display panel is damaged and the liquid crystal substance inside it leaks out, do not get any in your mouth. If the substance come into contact with your skin or clothes promptly wash it off using soap and water.
- **n** Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- **n** The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarize carefully.
- **n** To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
 - -Be sure to ground the body when handling the LCD module.
 - -Tools required for assembly, such as soldering irons, must be properly grounded.
 - -To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.
 - -The LCD module is coated with a film to protect the display surface. Exercise care when peeling off this protective film since static electricity may be generated.

n Storage precautions

When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps. Keep the modules in bags designed to prevent static electricity charging under low temperature / normal humidity conditions (avoid high temperature / high humidity and low temperatures below 0°C). Whenever possible, the LCD modules should be stored in the same conditions in which they were shipped from our company.

15. OTHERS

- **n** Liquid crystals solidify at low temperature (below the storage temperature range) leading to defective orientation of liquid crystal or the generation of air bubbles (black or white). Air bubbles may also be generated if the module is subjected to a strong shock at a low temperature.
- **n** If the LCD modules have been operating for a long time showing the same display patterns may remain on the screen as ghost images and a slight contrast irregularity may also appear. Abnormal operating status can be resumed to be normal condition by suspending use for some time. It should be noted that this phenomena does not adversely affect performance reliability.
- **n** To minimize the performance degradation of the LCD modules resulting from caused by static electricity, etc. exercise care to avoid holding the following sections when handling the modules:
 - Exposed area of the printed circuit board
 - Terminal electrode sections